VERSAMID® POLYAMIDE AND AMINOAMINE CURING AGENTS ### **TECHNICAL SELECTION GUIDE** | Versamid ® | | | |--|--|---| | EPOXY CURING AGENTS | | | | Product Name | Principal Applications | Comments/Advantages | | | | | | VERSAMID POLYAMIDE | RESINS | | | VERSAMID® 100
100 IT 60
100 X 65
100 PMX 60 | Solvent-based maintenance coatings; used with solid epoxy resins | Fast cure, good chemical resistance | | VERSAMID® 115
115 X 70
115173 | Solvent-based maintenance coatings; used with solid epoxy resins and adhesives | Good exibility and corrosion resistance | | VERSAMID® 125 | Coatings, castings, potting, laminating and adhesives | Medium-viscosity, good chemical resistance | | VERSAMID® 140 | Coatings, castings, potting, laminating and adhesives | Moderately low-viscosity, excellent chemical resi | | VERSAMID® 150 | Coatings, castings, potting, laminating and adhesives | Similar to Versamid® 140 with lower viscosity | | VERSAMID® 253 | High-solids (+80% NVM) coatings with liquid epoxies | No induction time required, no bloom or blush in | | VERSAMID® 280 B 75 | Corrosion resistant primers and topcoats | Polyamide/epoxy adduct 75% by weight in n-butanol | | VERSAMID® 230 XB 60 | Solvent-based coatings | Polyamide/epoxy adduct 60% by weight in n-buta | | VERSAMID G AMIDOAMI | NE RESINS | | | VERSAMID® G-151 | High-solids coatings, casting, laminates and adhesives | Low-blush, low moisture sensitivity | | VERSAMID® G-235 | High-solids (90+) coatings, industrial maintenance and marine coatings | Low-viscosity, good corrosion resistance | | VERSAMID® G-250 | High-solids coatings, castings, laminating and adhesives | Low-viscosity, good adhesion | | VERSAMID® G-490 | High-solids coatings and castings | Extremely low-viscosity, long pot life | | VERSAMID® G-491 | High-solids coatings, castings and adhesives | Similar to Versamid® G 490, but faster cure | | VERSAMID® G-747 | High-solids coatings, castings, potting, laminating, and adhesives | Very low-viscosity | | VERSAMID® G-2000 | Coatings, castings, potting, laminating, and adhesives | Fast cure, good chemical resistance | | | | | 11) Viscosity at 120 °C | 22) Viscosity at 75 °C | 33) Viscosity at 40 °C | 43) PHR, parts of curing agent per 100 parts of Epoxy Resin, 190 EEW Epoxy | 55) With 525 E | | Specifications | | | | Chemical Resistance* | | | | | | | |------------------------------|-------------------------------|---|--------------------------|-----------------------|----------------------|----------------|----------------|---------------|------------------|-----------------|-----------------------| | | Amine
Value mg
KOH/g | Viscosity
(25 °C) P | Max.
Color
Gardner | 10%
Acetic
Acid | 10%
HCI | 10%
H2S04 | 10%
NAOH | MEK | Xylene | Ethanol | %
Solids | | | | | | | | | | | | | | | | 85-95
50-58
54-63 | 30-50 ⁽¹⁾
8-18
20-45 ⁽³⁾
49-59 | 9
9
9
9 | -
-
-
- | -
-
- | -
-
- | -
-
- | -
-
- | -
-
-
- | -
-
- | 100
60
65
60 | | | 230-246
159-175
164-182 | 31-45 ⁽²⁾
4-6 ⁽³⁾
14-32 | 8
8
8 | 12.41
—
— | 1.85
—
— | 3.24
—
— | 0.55
—
— | DES
—
— | DES
—
— | 13.48
—
— | 100
70
73 | | | 330-360 | 6.5-9.5(2) | 8 | 6.93 | 0.80 | 1.24 | 0.57 | DES | 15.47 | 6.71 | 100 | | stance | 370-400 | 80-120 | 8 | 11.58 | 0.92 | 1.29 | 0.47 | DES | 13.36 | 5.36 | 100 | | | 370-400 | 20-40 | 8 | 11.57 | 1.09 | 1.69 | 0.52 | DES | 13.11 | 6.44 | 100 | | high humidity environments | 210-235 | 5-20 | 8 | 2.60 | 0.66 | 0.89 | 0.60 | DES | 13.36 | 7.40 | 72 | | or xylene, meets MIL-P-24441 | 240-260 | 43-90 | 8 | _ | _ | _ | _ | _ | _ | _ | 75 | | nol or xylene 1:4 by weight | 115-130 | 22-35 | 8 | _ | _ | _ | _ | _ | _ | _ | 60 | | | | | | | | | | | | | | | | 425-450 | 2.3-4 | 8 | 5.80 | 0.72 | 0.99 | 0.37 | DES | 19.00 | 8.38 | 100 | | | 350-400 | 1-4 | 8 | 4.81 | 0.69 | 0.89 | 0.47 | DES | DES | 8.85 | 100 | | | 425-450 | 5-10 | 8 | 6.95 | 0.87 | 1.36 | 0.41 | DES | 15.34 | 9.38 | 100 | | | 370-400 | 1-4 | 9 | 5.45 | 0.65 | 1.00 | 0.48 | DES | 23.52 | 7.74 | 100 | | | 500-580 | 5-10 | 9 | 12.29 | 0.86 | 1.32 | 0.41 | DES | 10.43 | 4.78 | 100 | | | 450-475 | 2-5 | 9 | 8.78 | 0.97 | 1.49 | 0.44 | DES | 13.98 | 6.59 | 100 | | | 580-620 | 10-25 | 8 | 15.44 | 1.60 | 3.14 | 0.43 | DES | 4.94 | 4.64 | 100 | EW Epoxy Resin (Solid basis) 63 wet mils DES = Destroyed *Chemical Resistance = % weight gain after a 7 day 25 °C cure followed by 21 days immersion a | Typical Properties | | | | | | | Mechanical Properties** | | | | | | |------------------------------|--------------------------|---|-------------------------|---|-----------------------------------|-------------------------------|---|-----------------------------------|-----------------|----------------------------------|--------------------------------|--------------------------------| | Density
(25°C)
lbs/gal | AHEW
g/eq | phr
for Max.
DSC,T ₉ | T _s (DSC) °C | Pot Life
@25°C
60% Solids,
Hrs:Min | Tack Free (6) Time @ 25°C Hrs:Min | Thru-Cure
@ 25 °C,
Hrs. | Gel Time
@25°C
200gm Mass,
Hrs:Min | Tensile
Strength,
psi x 10³ | Elongation
% | Flexural
Modulus
psi x 10³ | Flex
Strength,
psi x 103 | Comp
Strength,
psi x 10³ | | | | I | | | | | | | l | | | l | | 8.1
7.6
7.8
7.8 | 525
875
808
875 | 100 ⁽⁵⁾ 167 ⁽⁵⁾ 154 ⁽⁵⁾ 167 ⁽⁵⁾ | -
-
- | 16:00
—
—
— | 1:30
—
—
— | 48:00
—
—
— | _
_
_
_ | -
-
- | -
-
- | _
_
_
_ | _
_
_
_ | -
-
- | | 8.1
7.8
7.7 | 198
283
271 | 104
149
143 | 62
—
— | 4:00
—
— | 4:15
—
— | 6:00
—
— | _
_
_ | 6.0
—
— | 8.0
—
— | 320
—
— | -
-
- | 6.9
—
— | | 8.1 | 103 | 54 | 84 | 2:00 | 5:00 | 12:00 | 2:09 | 6.1 | 5.0 | 239 | 9.7 | 8.5 | | 8.0 | 97 | 51 | 93 | 3:30 | 6:30 | 12:00 | 2:15 | 6.4 | 3.8 | 326 | 13.6 | 11.4 | | 8.0 | 103 | 54 | 87 | 2:30 | 6:30 | 11:30 | 1:48 | 7.8 | 5.1 | 330 | 14.2 | 10.6 | | 8.3 | 131 | 69 | 41 | 3:00 | 7:45 | 14:00 | 1:11 | 5.7 | 5.3 | 154 | 7.5 | 9.4 | | 8.0 | 165 | 87 | _ | 6:00 | 6:00 | 24:00 | _ | _ | _ | _ | _ | _ | | 7.8 | 409 | 82(5) | _ | 10:00 | 2:00 | >24:00 | _ | _ | _ | _ | _ | _ | | | | | | | | | | | | | | | | 7.9 | 91 | 48 | 66 | 3:30 | 9:00 | 20:00 | 1:57 | 7.4 | 4.8 | 434 | 16.1 | 8.2 | | 7.8 | 95 | 47 | 66 | 12:30 | 15:00 | >24:00 | 3:50 | 3.3 | 2.4 | 293 | 10.9 | 6.8 | | 7.9 | 101 | 53 | 63 | 1:00 | 6:00 | 8:00 | 0:47 | 6.6 | 4.6 | 589 | 18.6 | 8.3 | | 7.9 | 95 | 50 | 80 | 8:00 | 14:00 | >24:00 | 3:55 | 6.8 | 4.6 | 653 | 20.4 | 7.5 | | 7.9 | 68 | 36 | 99 | 0:45 | 5:30 | 23:00 | 0:34 | 4.7 | 2.9 | 364 | 20.9 | 12.3 | | 7.8 | 93 | 49 | 81 | 3:00 | 8:00 | 23:00 | 1:40 | 8.4 | 5.4 | 304 | 13.1 | 7.4 | | 8.2 | 82 | 43 | 92 | 0:45 | 4:30 | 9:00 | 0:38 | 10.2 | 5.0 | 495 | 17.7 | 12.3 | # CHOOSE FROM A COMPLETE RANGE OF HIGH-QUALITY CURING AGENTS TO MEET YOUR MOST DEMANDING APPLICATIONS ### **VERSAMID® POLYAMIDE RESINS** Versamid® products have proven to be superior curing agents in many applications, such as industrial maintenance and marine coatings, high-performance architectural paints, high-solids and conventional coatings. ### **ADVANTAGES** - Highly resistant to chemical and water corrosion - Strong adhesion to a variety of substrates - Long pot life - Lower sensitivity to substrate impurities - Most comply with FDA regulations ### **VERSAMID® G AMIDOAMINE RESINS** Versamid® G curing agents offer many of the same application benefits as Versamid® polyamides, along with lower viscosity. High system solids and as low as zero VOC compositions can be produced. ### **ADVANTAGES** - Superior wetting characteristics when compared to aliphatic amines, aromatic amines, and anhydrides - Good adhesion - Excellent chemical resistance - Tougher, less toxic and non-migrating in preference to amine or polyamine epoxy coreactants - Fast cure time—Both Versamid® and Versamid® G curing agents cure epoxy agents at room temperature in several hours or at elevated temperatures in several minutes | Parameter | Polyamide | Amidoamine | Modified Amine | | | |----------------------|--------------|--------------|----------------|--|--| | Stoichiometry | Not critical | Not critical | Critical | | | | Pot-life | Long | Long | Short | | | | Coating cure speed | Low | Low-medium | High | | | | Viscosity | High | Medium | Low | | | | Flexibility | High | Medium | Low | | | | Hardness | Low | Med-low | High | | | | Corrosion Protection | High | High-med | Low | | | | Through cure | Medium | High | Low | | | ### VERSAMID® OUTPERFORMS OTHER CURING AGENTS Versamid® curing agents include reactive polyamide resins, amidoamines and modified amines designed for use with solid or liquid epoxy resins to provide tough, chemical-resistant, thermoset coating applications that cure at room temperature. These materials also find use in adhesive applications. Versamid® curing agents offer unique combinations of hardness and flexibility along with the highest chemical and solvent resistance of the dimer-based polyamide resin series. ### **VERSAMID® CURING AGENTS ARE RECOMMENDED FOR APPLICATIONS SUCH AS:** - Joint sealants - Patching compounds - Primers - NSF potable water coatings - Maintenance coating applications - High solids enamel paint formulations - Potting and encapsulation GET IN TOUCH WITH GABRIEL For further information and sample materials, please get in touch on: customerservice@gabrielchem.com Phone: 866-800-2436 (toll free) www.gabrielchem.com